

Cell-based Music Organization in Tom Clancy’s EndWar

Ben Houge
Assistant Professor, Berklee College of Music, 1140 Boylston St, Boston, MA 02215

bhouge@berklee.edu

Abstract
Tom Clancy’s EndWar, a real-time strategy game developed
by Ubisoft’s Shanghai studio for Xbox 360 and PlayStation
3 and released in November 2008, featured an innovative,
cell-based music deployment system that allowed for ex-
treme variability and tight responsiveness without sacrific-
ing production values. This paper describes the core func-
tionality of this system in the context of the game.

 Introduction
The emergence of optical media as a distribution format
for video and computer games in the 1990s allowed for a
substantial increase in the amount of digital audio that
could be incorporated into a game (Collins, p. 63). Since
then, there has been a tension between fidelity and variabil-
ity in how game music is organized and deployed. Sys-
tems like LucasArts’ iMUSE (Collins, p. 51) and Mi-
crosoft’s DirectMusic (Marks, p. 368) allowed for intricate,
note-based manipulations in real-time, but this flexibility
came at a price: the game engine had to include a sample-
playback synthesizer running in real-time, and any digital
signal processing (e.g., reverb) similarly had to be per-
formed in engine, on the fly. On the other end of the spec-
trum, games like Half-Life (1998, Valve/Sierra Entertain-
ment) and Diablo (1996, Blizzard Entertainment) featured
high quality studio recordings, but with minimal real-time
manipulation, such that music tracks would play unvary-
ingly for long stretches of time, regardless of what was
happening in the game.
 When I set out to design a music deployment system for
Tom Clancy’s EndWar (2008, Ubisoft), my goal was to
explore the middle ground between these two extremes,
having had extensive experience with both paradigms.
Most of the games to which I contributed music at Sierra
from 1996 to 2003 incorporated a simple, loop-based mu-
sic deployment mechanism; a track would loop as long as
it was required to play, and when a transition was required,
it would crossfade to another track. These games included

Copyright © 2012 Ben Houge. All rights reserved.

Arcanum: Of Steamworks & Magick Obscura (2001),
which featured a string quartet soundtrack performed by
members of the Seattle Symphony; King’s Quest: Mask of
Eternity (1998); and Leisure Suit Larry 7: Love for Sail!
(1996), which featured a jazz ensemble, among others. I
also developed a highly interactive soundtrack using Di-
rectMusic for Sierra’s cancelled Xbox title Johnny Drama
around 2001, employing many of DirectMusic’s advanced
features, such as chord maps and scripting.
 On EndWar, which I served as audio director from early
2005 until late 2008, I required a music system with high
production values, tight responsiveness, and wide-ranging
variability, to follow the emergent contours of a real-time
strategy game with high replayability and wide open out-
door environments. I also sought to eliminate loops and
fades, two conspicuous game soundtrack signifiers.

System Overview
One of the game’s key audio innovations, the EndWar mu-
sic system features what may be described as a cell-based
musical organization. A “cell” in this context is analogous
to a drum loop in many ways, except that it does not loop.
Like a drum loop, a cell is a digital recording of a short
musical phrase, several beats in duration. For flexibility, a
cell typically contains a stereo recording of a single in-
strument. However is not edited such that its duration is an
exact number of beats, as a drum loop would be, and its
last sample is not designed to lead seamlessly back into its
first sample. Rather, a cell’s practical musical duration (in
beats at a given tempo) is defined manually and stored in
metadata. When a cell is called to play, the corresponding
wave file is cued, and when the number of beats specified
in the cell’s metadata has elapsed, the cell is considered
complete (whether or not the wave file is still playing).
 This allows each cell to continue playing until the natu-
ral terminus of the recorded sound; it need not be edited
into a seamless loop. A cell may be shorter than its de-
fined beat length (as in the case of a wood block) or longer
(as in the case of a gong).

Fig. 1: Four steady beats on a woodblock take up less time
than the same rhythmic pattern performed on a gong, but
both cells are assigned the same duration of four beats.
Tempo displayed is 120 bpm.

 Cells are arranged into “pools.” When a pool is told to
play, its constituent cells are called in random order (with
no repeats, if there are more than two cells in the pool). If
a cell’s length in actual time exceeds its assigned beat du-
ration, the remaining audio simply continues to play,
mixed in with the beginning of the next cell. Since no
sample-accurate concatenation needs to occur, it is very
straightforward and idiomatic to create the effect of a loop
with variations, which would otherwise require extensive
editing and testing, to ensure that the end of each variation
could transition seamlessly into the beginning of every
other variation. When the pool is told to stop, it simply
plays the current cell to completion; there is no sudden
truncation or artificial fade out.
 Pools take parameters for minimum and maximum
pause (in beats). If these values are set, then a random
number of silent beats between these two limits is played
between cell repetitions. In my observation, there is huge
potential for musical development in dynamically modify-
ing these minimum and maximum pause values, allowing
for a passage’s density to be altered without changing its
fundamental material. Unlike many game soundtracks, in
which transitions are a matter of stopping one piece of mu-
sic and starting another, this system allows the music itself
to evolve in a very natural way, changing from the inside,
as it were, without drawing attention to the transition.
 Several layers of pools may be played at the same time.
With each pool containing a variety of different cells
(which of course may be of different beat durations), and
with varying pauses between cell repetitions, a rich, non-
repeating texture can be rapidly constructed. And because
the constituent cells are relatively short in duration, the
system still has the ability to respond quickly to emergent
game events without resorting to crude crossfades.
 Pools may be nested. Several pools may be placed inside
of a parent pool; a pool inside of another pool is referred to
as a “subpool.” A subpool, in addition to its minimum and
maximum pause parameters, also takes minimum and max-
imum repetition parameters. When a subpool is called, it
will choose a number of cells corresponding to a value

between its minimum and maximum repetitions; when that
number of cells has been played, the parent pool’s mini-
mum and maximum pause parameters are invoked, after
which another subpool is chosen. Of course, there may be
several layers of these nested subpools playing simultane-
ously. (This behavior was partially inspired by the slow,
overlapping evolution of parts in Morton Feldman’s com-
position Why Patterns?)

Fig. 2: Several layers of pools, each intermittently deploying
a variety of cells, all quantized to the same pulse, result in a
rich, evolving musical texture.

 Generally the goal was for different layers of subpools
to transition independently of each other, to maximize the
combinatorial potential of the system. However, in a few
situations, we wanted to allow two or more subpools to
transition at the same time. In this case, one pool could be
specified as a “master pool,” and when its parameters
caused it to transition to another section, other pools could
be set to transition at the same time.

Production Pipeline
To develop this system, I first developed a prototype in
Max/MSP that would play back percussive phrases I had
recorded on traditional Chinese instruments. At the same
time, we were fielding demos from composers for EndWar,
and we eventually settled on Alistair Hirst and Matt Ragan
of Omni Audio (then Omni Interactive Audio) in Seattle.
(The Omni Audio team also provided most of the sound
effects for EndWar.) Once I was happy with my music
prototype and the composers and been chosen, I flew to
Seattle to work with them for a week on the development
of three different pieces of music, which I took back to
Shanghai and set about implementing into my Max/MSP
prototype.
 After the music deployment mechanism had been ap-
proved with final music in place, I worked with the lead
audio programmer on the EndWar team, Wang Yichen, to
implement my Max/MSP prototype in C++. Having
worked through the system design in detail in Max/MSP,
the transition to C++ was smooth, and I was able to pro-
vide guidance and serve as an ideal tester. We devised a
simple tool that allowed me to write and read the musical
metadata (stored in XML format). I also wrote another

Max/MSP patch to allow me to very efficiently audition
and determine the practical duration of a given cell in
beats.
 I provided creative direction to Hirst and Ragan as they
composed new pieces, and they would send MP3 mockups
of how a new piece might play out in context. Once a
piece was approved, they would bust the tracks out into
individual cells and send them to me, and I would integrate
them into our game engine using our custom tools. As
with any system incorporating random variables, there was
a significant amount of time involved in testing and tweak-
ing the random parameters of each piece in context.
 In total, Hirst and Ragan composed nine different sets of
music. Each set was used in about three different levels
(EndWar featured about forty levels in total), and there was
a special piece of music for the main menu screen.

Technical Infrastructure and Constraints
EndWar used a highly modified version of the Unreal 3
engine. We gutted the Unreal engine’s audio system and
replaced it with Ubisoft’s proprietary DARE audio engine,
which was significantly more full-featured. DARE provid-
ed the requisite abstraction for defining and categorizing
all of our sound effects and also provided all the back-
ground loading and file management.
 The music system can be considered a high level system
built on top of DARE. We bypassed individual event defi-
nitions for each musical cell, but used DARE for the low
level loading and streaming.
 Because the EndWar music system required many indi-
vidual audio files to be mixed together in unpredictable
ways in real time, it was not feasible to stream all of these
files from the DVD. Instead, contrary to convention, most
of the music data was loaded into memory. This might
seem to be a major drawback of the system, but because
we could set data compression values on each cell individ-
ually some cells were set to be extremely compressed, al-
lowing us to fit a level’s worth of music into less than 2
MB of memory. In fact, in some cases, the distortion arti-
facts of compression were exploited as a desired aesthetic
phenomenon, supporting the game’s ethos of gritty real-
ism. Since cells with varying compression formats were
being played together, the overall effect was of a high
quality mix containing distorted elements, not of a low
quality, overcompressed soundtrack.
 We did reserve the option of playing two streaming ste-
reo layers from the DVD. These were used as arrhythmic
background pads, mostly comprised of sustained electric
guitar sounds submitted to various (offline) granular syn-
thesis treatments. These were deployed using the same
cell/pool hierarchical organization, but they were typically
longer than other cells, in some cases lasting up to one
minute (as in the main menu music). Usually only one of
these streaming cells would play at a time, but the ability to

play two streams at once allowed for the possibility of
overlaps at transition points. Due to their length, these
cells could be faded out in certain circumstances.
 From a compositional perspective, a certain understand-
ing of the manner in which the material would be deployed
affected the types of phrases that could be written. This
type of modular organization was something the compos-
ers quickly internalized. Practically speaking, although not
enforced by the system itself, each level’s music tended to
be written in one consistent mode, to accommodate a wide
number of possible configurations. Most critically, all
music for a given level had to be composed at one con-
sistent tempo, although we did experiment with using the
beat as a common denominator for metric modulation.

Stylistic Considerations
EndWar took its inspiration from contemporary battle-
fields, which is why we chose to pursue a rock aesthetic,
but we sought to create an expanded rock palette abstracted
from conventional song forms that encompassed a wide
spectrum of intensity, from dense, energetic passages to
quiet, ambient textures. Not only did this better match the
range of emotions the soundtrack was designed to support,
but it also evoked the a sense of exploration that is central
to the real-time strategy genre. The whole system is predi-
cated on a continuous, metronomic pulse to which all cells
are quantized, but the system has no concept of measure or
meter. A major inspiration for the soundtrack was the
freely improvised rock of the trio Massacre (Fred Frith,
Bill Laswell, and Charles Hayward) in which long phrases
spin out over a steady pulse, without implying a regular bar
line. This stretching, groping quality seemed a good fit for
the gameplay of EndWar, and it was a conscious move
away from the inherent periodicity of loop-based struc-
tures. In fact, even in such a highly dynamic system as
DirectMusic, phrase variations recur at regular intervals,
illustrating how hard it can be to escape from this perva-
sive looping paradigm.

Related Projects and Future Work
The EndWar music system has no direct descendants at
Ubisoft; EndWar 2 was cancelled after a few months of
production, and to my knowledge no subsequent game has
used the system. If the system were to be revisited in a
game, I would be interested to see it expanded to allow for
several hierarchical layers of nested pools (not just the two
levels implemented in EndWar, although that already pro-
vided significant terrain to explore). The underlying met-
ronome could be expanded to allow tempo fluctuation
within one level. There is also much potential in the idea
of incorporating real-time pitch manipulation, allowing
greater reuse of elements and reducing memory usage.

 I have continued to explore several of these ideas in sub-
sequent works outside of the game industry. My six-
channel sound installation Kaleidoscope Music (2009, first
presented at Beijing’s Today Art Museum) algorithmically
generates rhythmic phrases that are intermittently deployed
in a manner similar to EndWar’s cells (although there is no
prerecorded audio in this piece, only filtered environmental
sound, streamed into the computer in real time). Another
piece entitled Mobile 4 (2011, premiered at the San Diego
Museum of Art) also explores real-time phrase generation,
this time displayed in scrolling notation on networked lap-
top screens for acoustic musicians to interpret. And in
Food Opera: Four Asparagus Compositions (2012, premi-
ered at Harvard’s Graduate School of Design), a collabora-
tion with chef Jason Bond of the restaurant Bondir, I com-
posed a real-time algorithmic soundtrack for a four course,
asparagus-based tasting menu; here again, several layers of
short phrases were intermittently deployed to create a rich,
evolving sonic texture. I believe this mode of non-linear
musical organization represents fertile soil for continued
compositional investigation.

Acknowledgements
Thanks to the audio team of EndWar: Yassine
Abouelfalah, Ou Yuan Jun, Yu Hai Xiang, Ding Jun Mei,
Du Ke Jia, Song Wei Wei, Wang Yi Chen, Chen Ai Qi,
Wang Ge, with additional help from Zhang Lei and Ro-
main His. Thanks also to creative director Michael De
Plater, producer Audrey Leprince, and associate producer
Nathalie Paccard, for their vision and support in this
somewhat experimental venture. Thanks to AI program-
mer Vinh Dieu Lam, who was critical in actually getting
the music system to respond intelligently to the rest of the
game.

References
Collins, Karen. 2008. Game Sound: An Introduction to the His-
tory, Theory, and Practice of Video Game Music and Sound De-
sign. Cambridge, Mass.: The MIT Press.

Marks, Aaron. 2009. The Complete Guide to Game Audio. Bur-
lington, Mass.: Focal Press.

For more information about audio development for Tom Clancy’s
EndWar, including video clips of the music system in action,
please visit http://www.benhouge.com/writings/?p=628.

